
Abelian Varieties II
Luozi Shi

Main reference: David Mumford’s Abelian Varieties Chapter 6 and Brian Conrad’s notes on abelian varieties.
Convention: Fix an algebraically closed field k and a variety is always assumed to be integral.

0 Preparation
(will copy this part on the blackboard before the seminar starts)

Recall the following results from Talk 11.

Definition 0.1. An abelian variety X is a proper, smooth and connected group scheme.

We defined m : X ×X −→ X, Tx : X −→ X, [n] : X −→ X, and so on..

Corollary 0.2. Let X be an abelian variety, then H0(X,OX) = k.

Theorem 0.3 (Seesaw Theorem). Let X be a complete variety, T any variety and L a line bundle on X×T . Then
the set

T1 = {t ∈ T (k) | L|X×{t} is trivial on X × {t}}

is closed in T (k), and if on p2 : X ×T1 −→ T1 is the projection, then L|X×T1
∼= p∗2M for some line bundle M on T1.

Corollary 0.4 (Theorem of the square). For all line bundles L, x, y ∈ X(k)

T ∗
x+yL ⊗ L ∼= T ∗

xL ⊗ T ∗
yL.

Proposition 0.5. Over X the group of Weil divisors are isomorphic to the group of Cartier divisors. Furthermore,
the monoid of effective divisors are the isomorphic to the monoid of effective Cartier divisors.

Proof. Details can be found in Hartshorne Proposition 2.6.11. (requires X to be an integral, separated Noetherian
scheme, all of whose local rings are factorial)

This proposition allows us to use effective divisors and effective Cartier divisors interchangeably.
By the fact OX(D1) ∼= OX(D2) ⇐⇒ D1 ≡ D2, we get Thm of the square in divisor form: let D be any divisor

(notice that for any divisor D, OX(D) is a line bundle now!) then

T ∗
x+yD +D ≡ T ∗

xD + T ∗
yD

where the ≡ sign means they differ by a principal generator.
Define the map

φL(x) = isom. class of T ∗
xL ⊗ L−1

By theorem of the square φL(x) is a group homomorphism from X(k) to Pic(X). Moreover, one can easily check
that

(i) φL1⊗L2
= φL1

+ φL2

(ii) φT∗
xL = φL.

1 Characterizing ample line bundles on X

Definition 1.1. Let X be an abelian variety, L a line bundle over X then define

K(L) := ker(φL) = {x ∈ X(k) | T ∗
xL ∼= L}.

Futhermore, if L = OX(D) where D is a Weil divisor, define

H(D) := {x ∈ X(k) | T ∗
x (D) = D}.
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Again by the fact OX(D1) ∼= OX(D2) ⇐⇒ D1 ≡ D2 one can see that H(D) ⊂ K(L).

Proposition 1.2. K(L) and H(D) are Zariski-closed subgroups of X.

Proof. K(L): Define (x, id) : X −→ X×X to be the morphism that sends y 7→ (x, y). It follows that m◦ (x, id) = Tx

and p2 ◦ (x, id) = idX by checking on k-valued points. Consider the line bundle m∗L ⊗ p∗2L−1 on X ×X, one has

m∗L ⊗ p∗2L−1|{x}×X
∼= (x, id)∗(m∗L ⊗ p∗2L−1) ∼= T ∗

xL ⊗ L−1

the set of x satisfying this equation is exactly K(L). By Seesaw Theorem K(L) is Zariski-closed.
H(D): H(D) = {x ∈ X(k) | T ∗

x (D) = D} =
⋂

d∈D(k)(−d+D) is a closed subgroup.

Remark. Here K(L)/H(D) being Zarkski-closed means on the subspace topology on X(k).

Here comes the main theorem for the characterization of an ample line bundle.

Theorem 1.3. Let D be an effective divisor (or an effective Cartier divisor) on an abelian variety X and L =
OX(D) be the associated line bundle. TFAE:

(i) H(D) is finite.

(ii) K(L) is finite.

(iii) L⊗2 is finitely globally generated and defines a finite morphism φ : X −→ PN .

(iv) L is ample on X.

Proof. (iii) =⇒ (iv): As φ : X −→ PN is induced by global sections, we have φ∗O(1) ∼= L⊗2. It follows by the fact
that pullback of ample line bundle under an affine morphism is ample.

(iv) =⇒ (ii): Let Y be the connected component of 0 in K(L), equipped with the reduced closed subscheme
structure.

Claim: Y is an abelian variety.
Proof of the Claim: Group scheme: Consider K(L)(k) as a topological group, and the connected component of

the identity of a topological group is a closed subgroup of X(k). As Y is geometrically integral, Y × Y is integral.
And it suffices to check that m : Y × Y −→ X factors through Y .

Proper: Y admits a close immersion into X.
Smooth: a reduced group scheme over an algebraically closed field is smooth (1.5.3 in Conrad’s notes).
Connected: by def. ■
Now we start to make use of L. The restriction LY of L to Y is ample and T ∗

y (LY ) ∼= LY for all y ∈ Y (k).
Claim: LY ⊗ [−1]∗LY is both ample and trivial on Y .
Proof of the Claim: Ampleness: LY is ample and [−1] is an automorphism on Y .
Trivialnesss: Similar to the proof of the Seesaw Theorem

m∗LY ⊗ p∗1L−1
Y ⊗ p∗2L−1

Y |{y}×Y
∼= T ∗

yLY ⊗OY ⊗ L−1
Y

∼= OY .

Thus this line bundle is trivial on {y} × Y for every y ∈ Y (k). By Seesaw it is of the form p∗2M where M is a
line bundle over Y . One can construct a section for p2 and show that M must be trivial.

Now consider the morphism (id,−id) : Y −→ Y × Y defined by y 7→ (y,−y), by observing k-valued points

(id,−id)∗(m∗LY ⊗ p∗1L−1
Y ⊗ p∗2L−1

Y ) ∼= OX ⊗ L−1
Y ⊗ [−1]∗L−1

Y .

■
The claim above =⇒ Y is quasi-affine =⇒ Y = {∗} =⇒ K(L) is finite (otherwise we can move a curve to 0).
(ii) =⇒ (i): Since H(D) ⊂ K(L).
(i) =⇒ (iii): L⊗2 is globally generated: Since X is quasi-compact and L⊗2 is of finite type,
L⊗2 is finitely globally generated ⇐⇒ L⊗2 is globally generated ⇐⇒ for any point u ∈ X(k), there exists a

global section s ∈ L⊗2 such that su does not vanish at u. (some people like to call it base-point free)
So fix a point u, there exists an x ∈ X such that u± x ̸∈ Supp D (otherwise for all x ∈ X(k), x ∈ ± (Supp D

−u) and this means that u ̸∈ Supp (T ∗
x (D) + T ∗

−x(D)).
By Thm of the Square,

L⊗2 ∼= OX(2D) ∼= OX(T ∗
x (D) + T ∗

−x(D)).

Recall that we can take 1 ∈ Γ(X,OX(T ∗
x (D) + T ∗

−x(D)) which does not vanish at (Supp (T ∗
x (D) + T ∗

−x(D)))c.
So it does not vanish at u! Note that it suffices to check that their exists a global section does not vanish at closed
points, because if some global section vanishes at gen points it vanishes at all closed points above it!
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Remark. In the above argument, we did not use the fact that H(D) is finite. Thus over X, every line bundle of
the form L⊗2 where L is associated to an effective divisor is globally generated.

φ is finite: φ is finite ⇐⇒ φ is quasi-finite (by properness) and quasi-finiteness suffices to be checked on
closed points. One can refer to: https://math.stackexchange.com/questions/146186/finite-fibers-over-closed-points.
Suppose φ is not quasi-finite, then there exists an irreducible curve C such that φ(C) ={one point} (consider the
fiber product between X and some point and take a dimension 1 irreducible closed subset).

Claim: There exists x0 ∈ X(k) such that (D + x0)
⋂

C = ∅.
Proof of the Claim: Recall that divisors that are linearly equivalent to D + D are exactly those of the form

φ−1(H) where H is a hyperplane in PN . One can refer to: https://math.stackexchange.com/questions/356710/the-
fibers-of-a-map-to-mathbbp1. Thus one either have C ⊂ T ∗

x (D) + T ∗
−x(D) or C

⋂
T ∗
x (D) + T ∗

−x(D) = ∅. Fix some
c0 ∈ C(k), by the arguments above there exists some x0 such that c0 ̸∈ Supp (T ∗

x0
(D)+T ∗

−x0
(D)) so at least C and

D + x0 are disjoint. ■
Now we state a general fact

Lemma 1.4. If C is a curve on X and E is an irreducible divisor on X such that C
⋂
E = ∅, then E is invariant

under translation by x1 − x2 where x1, x2 ∈ C.

Sketch of the proof of the lemma: N = OX(E) is trivial on C. Thus T ∗
xN|C has degree 0 for all x ∈ X(k).

As intersecting at finitely many points makes the degree positive, Tx(C) and E are disjoint or Tx(C) ⊂ E. Let
x1, x2 ∈ C(k) and y ∈ E(k). Then T ∗

x2−y(C)(k) and E(k) meet at y. So T ∗
x2−y(C)(k) ⊂ E(k), in particular

T ∗
x2−y(x1) ∈ E(k) and y − x2 + x1 ∈ E(k).

Write D =
∑

niDi with Di irreducible, then by Claim+Lemma each Di + x0 is invariant under translation by
all points x1 − x2, xi ∈ C. So is D + x0 and D, which contradicts to the finiteness of (i).

Corollary 1.5. Let X be an abelian variety. Then X is projective.

Proof. Reduced to: construct an ample line bundle L over X.
Let SpecA be an affine open neighbourhood of 0.
Claim: Suppose X is Noetherian, normal and separated, SpecA ⊂ X then D := X−SpecA is of pure codimension

1.
Proof of the Claim: (one can draw a picture) Suppose η ∈ D with ht(η) ≥ 2. Then choose an affine neighbour-

hood V of η such that gen points of D
⋂
V = {η}.

Then argue that V and SpecA
⋂
V has the same set of codimension 1 points. Use the algebraic Hartog’s lemma

(requires Noetherianess and normality of X) to see that they have the isomorphic global section, and both are
affine). ■

As D is a closed subset of a Noetherian scheme there are only finitely many irreducible components, D can also
be expressed as a Weil divisor. Thus we can define H(D).

H(D) stabilizes D ⇐⇒ H(D) stabilizes SpecA =⇒ H(D) ⊂ SpecA (because 0 ∈ SpecA). H(D) is proper
and lies in an affine open neighbourhood means H is finite. By the theorem above, L is ample.

Remark. In the proof we constructed an ample line bundle, but we can even construct an ample and symmetric
line bundle by taking L⊗ [−1]∗L.

2 Structure of n-torsion subgroups of X(k)

Definition 2.1. Define X[n] to be the pullback of the following diagram

X[n] Spec k

X X

Warning: X[n] might not be reduced if char k | n.
Motivation: when k = C, X(C) is a complex torus (refer to Chapter 1 (2) in Mumford’s book), i.e.

X(C) ∼= Cg/Λ

where Λ is a full lattice. In this case it is easy to see that X[n](k) ∼= 1
nΛ/Λ

∼= (Z/nZ)2g. When g = 1 one can even
draw a picture.
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One can see that X[n](k) is the n-torsion subgroup of X(k). To study the n-torsion subgroup, it is natural to
study the homomorphism [n] first.

Definition 2.2 (Degree of a morphism). Let X and Y be varieties both of dimension n and let f : X −→ Y be a
surjective morphism. The function fields k(X) and k(Y ) are of transcendental degree n so via f∗, k(X) is a finite
extension of k(Y ). Then we define the degree d of f to be the degree of the extension [k(X) : k(Y )].

Now we state some properties of [n].

Proposition 2.3. i) For all n ≥ 1, [n] is a finite flat surjection. Thus X(k) is a divisible group.
ii) deg[n] = n2g where g = dimX.

Proof. Claim: X[n](k) is finite.
The claim above =⇒ [n] is quasi-finite (again only checked on closed points) because [n]−1(x) is either empty

or x0 +X[n](k) for some x0 ∈ X(k) =⇒ [n] is finite.
By Going-up theorem finite morphisms does not contract any chain so the image of a length n chain still has

length n and we can reach the generic point. Thus [n] is surjective.
Proof of the Claim: Let L be an ample line bundle on X (we proved it exists just now!). Then by Corollary 3

in the last talk

[n]∗L ∼= L
n(n+1)

2 ⊗ [−1]∗L
n(n−1)

2 .

Again we can see that [n]∗L is ample but [n]∗L cannot be trivial on any positive dimensional subvariety. Because
[n]∗L is trivial on X[n] (think about pulling back through Spec k in the Cartesian diagram), X[n](k) must be finite.

■
Flatness of [n]: refer to the Miracle Flatness Theorem in Matsumura Ch 23.1.
deg[n] = n2g: For any line bundle we have the following formula:

deg(Ln) = ng degL.

where g = dimX. Let L be an ample line bundle over X. Replace L by L ⊗ [−1]∗L which is a symmetric ample
line bundle. Then deg([n]∗L) = deg(Ln2

) = n2g degL. (here use Corollary 3 again)
Finally conclude use the fact: under pullback by a finite flat morphism and if the target is proper and integral,

the degree is multiplied by the degree of the morphism (Stacks project 0BEX/Conrad Prop 4.1.11).

Next: study the structure of X[n](k) as a group. Let p = char k.
Fact: Let d′ be the separable degree of the extension, then the cardinality of f−1(y) is d′ for y in a dense open

subset of Y . Thus the n-torsion group can be studied by considering the separable degree of [n].

Proposition 2.4. If p ∤ n, X[n](k) ∼= (Z/nZ)2g.

Proof. [n]∗ induces a separable extension on [k(X) : k(Y )] since p ∤ n, so |X[n](k)| = n2g and we know the cardinality
of all m-torsion group in X[n](k) is m2g where m | n. By elementary group theory we are done.

Proposition 2.5. Xpm ∼= (Z/pmZ)i for some 0 ≤ i ≤ g.

Proof. (Sketched)
Reduce to show X[p](k) = (Z/pZ)i because X[n] is divisible.
Reduce to: show [p]∗ : k(X) −→ k(X) factors through k(X)p. This implies that the inseparable degree is at least

pg.
The universal differential d : k(X) −→ Ω1

k(X)/k has kernel k(X)p.
d([p]∗f) = [p]∗df = 0 for all f ∈ k(X). Thus it suffices to show that [p]∗ kills Ω1

k(X)/k.
From the discussion in Ch 4, d[p] maps TX,0 to 0. Since [p] commutes with translation, [p]∗ is everywhere 0 on

Ω1
X/k. Looking at the generic point [p]∗ kills Ω1

k(X)/k.

Remark. Indeed we classified all X[n] since by Chinese Remainder Thm we can split to the torsion subgroups for
different pi’s.
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