Abelian Varieties II

Luozi Shi

Main reference: David Mumford's Abelian Varieties Chapter 6 and Brian Conrad's notes on abelian varieties. Convention: Fix an algebraically closed field k and a variety is always assumed to be integral.

0 Preparation

(will copy this part on the blackboard before the seminar starts)

Recall the following results from Talk 11.

Definition 0.1. An abelian variety X is a proper, smooth and connected group scheme.

We defined $m: X \times X \to X, T_x: X \to X, [n]: X \to X$, and so on..

Corollary 0.2. Let X be an abelian variety, then $H^0(X, \mathcal{O}_X) = k$.

Theorem 0.3 (Seesaw Theorem). Let X be a complete variety, T any variety and \mathcal{L} a line bundle on $X \times T$. Then the set

 $T_1 = \{t \in T(k) \mid \mathcal{L}|_{X \times \{t\}} \text{ is trivial on } X \times \{t\}\}$

is closed in T(k), and if on $p_2: X \times T_1 \to T_1$ is the projection, then $\mathcal{L}|_{X \times T_1} \cong p_2^* \mathcal{M}$ for some line bundle M on T_1 .

Corollary 0.4 (Theorem of the square). For all line bundles \mathcal{L} , $x, y \in X(k)$

$$T_{x+y}^*\mathcal{L}\otimes\mathcal{L}\cong T_x^*\mathcal{L}\otimes T_y^*\mathcal{L}.$$

Proposition 0.5. Over X the group of Weil divisors are isomorphic to the group of Cartier divisors. Furthermore, the monoid of effective divisors are the isomorphic to the monoid of effective Cartier divisors.

Proof. Details can be found in Hartshorne Proposition 2.6.11. (requires X to be an integral, separated Noetherian scheme, all of whose local rings are factorial) \Box

This proposition allows us to use effective divisors and effective Cartier divisors interchangeably.

By the fact $\mathcal{O}_X(D_1) \cong \mathcal{O}_X(D_2) \iff D_1 \equiv D_2$, we get Thm of the square in divisor form: let D be any divisor (notice that for any divisor D, $\mathcal{O}_X(D)$ is a line bundle now!) then

$$T_{x+y}^*D + D \equiv T_x^*D + T_y^*D$$

where the \equiv sign means they differ by a principal generator.

Define the map

$$\varphi_{\mathcal{L}}(x) = isom. \ class \ of \ T_x^* \mathcal{L} \otimes \mathcal{L}^{-1}$$

By theorem of the square $\varphi_{\mathcal{L}}(x)$ is a group homomorphism from X(k) to $\operatorname{Pic}(X)$. Moreover, one can easily check that

- (i) $\varphi_{\mathcal{L}_1 \otimes \mathcal{L}_2} = \varphi_{\mathcal{L}_1} + \varphi_{\mathcal{L}_2}$
- (ii) $\varphi_{T_x^*\mathcal{L}} = \varphi_{\mathcal{L}}.$

1 Characterizing ample line bundles on X

Definition 1.1. Let X be an abelian variety, \mathcal{L} a line bundle over X then define

$$K(\mathcal{L}) := \ker(\varphi_{\mathcal{L}}) = \{ x \in X(k) \mid T_x^* \mathcal{L} \cong \mathcal{L} \}.$$

Furthermore, if $\mathcal{L} = \mathcal{O}_X(D)$ where D is a Weil divisor, define

$$H(D) := \{ x \in X(k) \mid T_x^*(D) = D \}.$$

Again by the fact $\mathcal{O}_X(D_1) \cong \mathcal{O}_X(D_2) \iff D_1 \equiv D_2$ one can see that $H(D) \subset K(L)$.

Proposition 1.2. $K(\mathcal{L})$ and H(D) are Zariski-closed subgroups of X.

Proof. $K(\mathcal{L})$: Define $(x, \mathrm{id}) : X \to X \times X$ to be the morphism that sends $y \mapsto (x, y)$. It follows that $m \circ (x, \mathrm{id}) = T_x$ and $p_2 \circ (x, \mathrm{id}) = \mathrm{id}_X$ by checking on k-valued points. Consider the line bundle $m^*\mathcal{L} \otimes p_2^*\mathcal{L}^{-1}$ on $X \times X$, one has

$$m^*\mathcal{L} \otimes p_2^*\mathcal{L}^{-1}|_{\{x\} \times X} \cong (x, \mathrm{id})^* (m^*\mathcal{L} \otimes p_2^*\mathcal{L}^{-1}) \cong T_x^*\mathcal{L} \otimes \mathcal{L}^{-1}$$

the set of x satisfying this equation is exactly $K(\mathcal{L})$. By Seesaw Theorem $K(\mathcal{L})$ is Zariski-closed. $H(D): H(D) = \{x \in X(k) \mid T_x^*(D) = D\} = \bigcap_{d \in D(k)} (-d + D)$ is a closed subgroup.

Remark. Here $K(\mathcal{L})/H(D)$ being Zarkski-closed means on the subspace topology on X(k).

Here comes the main theorem for the characterization of an ample line bundle.

Theorem 1.3. Let D be an effective divisor (or an effective Cartier divisor) on an abelian variety X and $\mathcal{L} = \mathcal{O}_X(D)$ be the associated line bundle. TFAE:

- (i) H(D) is finite.
- (ii) $K(\mathcal{L})$ is finite.

(iii) $\mathcal{L}^{\otimes 2}$ is finitely globally generated and defines a finite morphism $\varphi: X \to \mathbb{P}^N$.

(iv) \mathcal{L} is ample on X.

Proof. $(iii) \implies (iv)$: As $\varphi : X \to \mathbb{P}^N$ is induced by global sections, we have $\varphi^* \mathcal{O}(1) \cong L^{\otimes 2}$. It follows by the fact that pullback of ample line bundle under an affine morphism is ample.

 $(iv) \implies (ii)$: Let Y be the connected component of 0 in $K(\mathcal{L})$, equipped with the reduced closed subscheme structure.

<u>*Claim:*</u> Y is an abelian variety.

<u>Proof of the Claim</u>: Group scheme: Consider $K(\mathcal{L})(k)$ as a topological group, and the connected component of the identity of a topological group is a closed subgroup of X(k). As Y is geometrically integral, $Y \times Y$ is integral. And it suffices to check that $m: Y \times Y \to X$ factors through Y.

Proper: Y admits a close immersion into X.

Smooth: a reduced group scheme over an algebraically closed field is smooth (1.5.3 in Conrad's notes). Connected: by def.

Now we start to make use of \mathcal{L} . The restriction \mathcal{L}_Y of L to Y is ample and $T_y^*(\mathcal{L}_Y) \cong \mathcal{L}_Y$ for all $y \in Y(k)$. <u>Claim:</u> $\mathcal{L}_Y \otimes [-1]^* \mathcal{L}_Y$ is both ample and trivial on Y.

Proof of the Claim: Ampleness: \mathcal{L}_Y is ample and [-1] is an automorphism on Y.

Trivialness: Similar to the proof of the Seesaw Theorem

$$m^*\mathcal{L}_Y \otimes p_1^*\mathcal{L}_Y^{-1} \otimes p_2^*\mathcal{L}_Y^{-1}|_{\{y\} \times Y} \cong T_y^*\mathcal{L}_Y \otimes \mathcal{O}_Y \otimes \mathcal{L}_Y^{-1} \cong \mathcal{O}_Y.$$

Thus this line bundle is trivial on $\{y\} \times Y$ for every $y \in Y(k)$. By Seesaw it is of the form $p_2^*\mathcal{M}$ where \mathcal{M} is a line bundle over Y. One can construct a section for p_2 and show that \mathcal{M} must be trivial.

Now consider the morphism $(id, -id): Y \to Y \times Y$ defined by $y \mapsto (y, -y)$, by observing k-valued points

$$(\mathrm{id}, -\mathrm{id})^*(m^*\mathcal{L}_Y \otimes p_1^*\mathcal{L}_Y^{-1} \otimes p_2^*\mathcal{L}_Y^{-1}) \cong \mathcal{O}_X \otimes \mathcal{L}_Y^{-1} \otimes [-1]^*\mathcal{L}_Y^{-1}.$$

The claim above $\implies Y$ is quasi-affine $\implies Y = \{*\} \implies K(L)$ is finite (otherwise we can move a curve to 0). (*ii*) \implies (*i*): Since $H(D) \subset K(\mathcal{L})$.

 $(i) \implies (iii): \mathcal{L}^{\otimes 2}$ is globally generated: Since X is quasi-compact and $L^{\otimes 2}$ is of finite type,

 $\mathcal{L}^{\otimes 2}$ is finitely globally generated $\iff \mathcal{L}^{\otimes 2}$ is globally generated \iff for any point $u \in X(k)$, there exists a global section $s \in \mathcal{L}^{\otimes 2}$ such that s_u does not vanish at u. (some people like to call it base-point free)

So fix a point u, there exists an $x \in X$ such that $u \pm x \notin \text{Supp } D$ (otherwise for all $x \in X(k)$, $x \in \pm$ (Supp D - u) and this means that $u \notin \text{Supp } (T^*_x(D) + T^*_{-x}(D))$.

By Thm of the Square,

$$\mathcal{L}^{\otimes 2} \cong \mathcal{O}_X(2D) \cong \mathcal{O}_X(T^*_x(D) + T^*_{-x}(D))$$

Recall that we can take $1 \in \Gamma(X, \mathcal{O}_X(T^*_x(D) + T^*_{-x}(D))$ which does not vanish at $(\text{Supp } (T^*_x(D) + T^*_{-x}(D)))^c$. So it does not vanish at u! Note that it suffices to check that their exists a global section does not vanish at closed points, because if some global section vanishes at gen points it vanishes at all closed points above it!

Remark. In the above argument, we did not use the fact that H(D) is finite. Thus over X, every line bundle of the form $\mathcal{L}^{\otimes 2}$ where \mathcal{L} is associated to an effective divisor is globally generated.

 $\underline{\varphi}$ is finite: φ is finite $\iff \varphi$ is quasi-finite (by properness) and quasi-finiteness suffices to be checked on closed points. One can refer to: https://math.stackexchange.com/questions/146186/finite-fibers-over-closed-points. Suppose φ is not quasi-finite, then there exists an irreducible curve C such that $\varphi(C) = \{\text{one point}\}$ (consider the fiber product between X and some point and take a dimension 1 irreducible closed subset).

<u>Claim</u>: There exists $x_0 \in X(k)$ such that $(D + x_0) \cap C = \emptyset$.

<u>Proof of the Claim</u>: Recall that divisors that are linearly equivalent to D + D are exactly those of the form $\varphi^{-1}(H)$ where H is a hyperplane in \mathbb{P}^N . One can refer to: https://math.stackexchange.com/questions/356710/the-fibers-of-a-map-to-mathbbp1. Thus one either have $C \subset T_x^*(D) + T_{-x}^*(D)$ or $C \cap T_x^*(D) + T_{-x}^*(D) = \emptyset$. Fix some $c_0 \in C(k)$, by the arguments above there exists some x_0 such that $c_0 \notin \text{Supp}(T_{x_0}^*(D) + T_{-x_0}^*(D))$ so at least C and $D + x_0$ are disjoint.

Now we state a general fact

1.

Lemma 1.4. If C is a curve on X and E is an irreducible divisor on X such that $C \cap E = \emptyset$, then E is invariant under translation by $x_1 - x_2$ where $x_1, x_2 \in C$.

Sketch of the proof of the lemma: $\mathcal{N} = \mathcal{O}_X(E)$ is trivial on C. Thus $T_x^* \mathcal{N}|_C$ has degree 0 for all $x \in X(k)$. As intersecting at finitely many points makes the degree positive, $T_x(C)$ and E are disjoint or $T_x(C) \subset E$. Let $x_1, x_2 \in C(k)$ and $y \in E(k)$. Then $T_{x_2-y}^*(C)(k)$ and E(k) meet at y. So $T_{x_2-y}^*(C)(k) \subset E(k)$, in particular $T_{x_2-y}^*(x_1) \in E(k)$ and $y - x_2 + x_1 \in E(k)$. Write $D = \sum n_i D_i$ with D_i irreducible, then by Claim+Lemma each $D_i + x_0$ is invariant under translation by

Write $D = \sum n_i D_i$ with D_i irreducible, then by Claim+Lemma each $D_i + x_0$ is invariant under translation by all points $x_1 - x_2$, $x_i \in C$. So is $D + x_0$ and D, which contradicts to the finiteness of (i).

Corollary 1.5. Let X be an abelian variety. Then X is projective.

Proof. Reduced to: construct an ample line bundle \mathcal{L} over X.

Let $\operatorname{Spec} A$ be an affine open neighbourhood of 0.

<u>Claim</u>: Suppose X is Noetherian, normal and separated, Spec $A \subset X$ then D := X - Spec A is of pure codimension

<u>Proof of the Claim</u>: (one can draw a picture) Suppose $\eta \in D$ with $ht(\eta) \ge 2$. Then choose an affine neighbourhood V of η such that gen points of $D \cap V = \{\eta\}$.

Then argue that V and Spec $A \cap V$ has the same set of codimension 1 points. Use the algebraic Hartog's lemma (requires Noetherianess and normality of X) to see that they have the isomorphic global section, and both are affine).

As D is a closed subset of a Noetherian scheme there are only finitely many irreducible components, D can also be expressed as a Weil divisor. Thus we can define H(D).

H(D) stabilizes $D \iff H(D)$ stabilizes $\operatorname{Spec} A \implies H(D) \subset \operatorname{Spec} A$ (because $0 \in \operatorname{Spec} A$). H(D) is proper and lies in an affine open neighbourhood means H is finite. By the theorem above, \mathcal{L} is ample.

Remark. In the proof we constructed an ample line bundle, but we can even construct an ample and symmetric line bundle by taking $L \otimes [-1]^* L$.

2 Structure of *n*-torsion subgroups of X(k)

Definition 2.1. Define X[n] to be the pullback of the following diagram

$$\begin{array}{c} X[n] \longrightarrow \operatorname{Spec} k \\ \downarrow \qquad \qquad \downarrow \\ X \longrightarrow X \end{array}$$

Warning: X[n] might not be reduced if char $k \mid n$.

Motivation: when $k = \mathbb{C}$, $X(\mathbb{C})$ is a complex torus (refer to Chapter 1 (2) in Mumford's book), i.e.

$$X(\mathbb{C}) \cong \mathbb{C}^g / \Lambda$$

where Λ is a full lattice. In this case it is easy to see that $X[n](k) \cong \frac{1}{n}\Lambda/\Lambda \cong (\mathbb{Z}/n\mathbb{Z})^{2g}$. When g = 1 one can even draw a picture.

One can see that X[n](k) is the *n*-torsion subgroup of X(k). To study the *n*-torsion subgroup, it is natural to study the homomorphism [n] first.

Definition 2.2 (Degree of a morphism). Let X and Y be varieties both of dimension n and let $f : X \to Y$ be a surjective morphism. The function fields k(X) and k(Y) are of transcendental degree n so via f^* , k(X) is a finite extension of k(Y). Then we define the degree d of f to be the degree of the extension [k(X) : k(Y)].

Now we state some properties of [n].

Proposition 2.3. i) For all $n \ge 1$, [n] is a finite flat surjection. Thus X(k) is a divisible group. ii) deg $[n] = n^{2g}$ where $g = \dim X$.

Proof. <u>*Claim:*</u> X[n](k) is finite.

The claim above $\implies [n]$ is quasi-finite (again only checked on closed points) because $[n]^{-1}(x)$ is either empty or $x_0 + X[n](k)$ for some $x_0 \in X(k) \implies [n]$ is finite.

By Going-up theorem finite morphisms does not contract any chain so the image of a length n chain still has length n and we can reach the generic point. Thus [n] is surjective.

<u>Proof of the Claim</u>: Let \mathcal{L} be an ample line bundle on X (we proved it exists just now!). Then by Corollary 3 in the last talk

$$[n]^*\mathcal{L} \cong \mathcal{L}^{\frac{n(n+1)}{2}} \otimes [-1]^*\mathcal{L}^{\frac{n(n-1)}{2}}$$

Again we can see that $[n]^*\mathcal{L}$ is ample but $[n]^*\mathcal{L}$ cannot be trivial on any positive dimensional subvariety. Because $[n]^*\mathcal{L}$ is trivial on X[n] (think about pulling back through Spec k in the Cartesian diagram), X[n](k) must be finite.

Flatness of [n]: refer to the Miracle Flatness Theorem in Matsumura Ch 23.1. $\overline{\deg[n]} = n^{2g}$: For any line bundle we have the following formula:

$$\deg(\mathcal{L}^n) = n^g \deg \mathcal{L}.$$

where $g = \dim X$. Let \mathcal{L} be an ample line bundle over X. Replace \mathcal{L} by $\mathcal{L} \otimes [-1]^* \mathcal{L}$ which is a symmetric ample line bundle. Then $\deg([n]^* \mathcal{L}) = \deg(\mathcal{L}^{n^2}) = n^{2g} \deg \mathcal{L}$. (here use Corollary 3 again)

Finally conclude use the fact: under pullback by a finite flat morphism and if the target is proper and integral, the degree is multiplied by the degree of the morphism (Stacks project 0BEX/Conrad Prop 4.1.11).

Next: study the structure of X[n](k) as a group. Let $p = \operatorname{char} k$.

Fact: Let d' be the separable degree of the extension, then the cardinality of $f^{-1}(y)$ is d' for y in a dense open subset of Y. Thus the n-torsion group can be studied by considering the separable degree of [n].

Proposition 2.4. If $p \nmid n$, $X[n](k) \cong (\mathbb{Z}/n\mathbb{Z})^{2g}$.

Proof. $[n]^*$ induces a separable extension on [k(X) : k(Y)] since $p \nmid n$, so $|X[n](k)| = n^{2g}$ and we know the cardinality of all *m*-torsion group in X[n](k) is m^{2g} where $m \mid n$. By elementary group theory we are done.

Proposition 2.5. $X_{p^m} \cong (\mathbb{Z}/p^m\mathbb{Z})^i$ for some $0 \le i \le g$.

Proof. (Sketched)

Reduce to show $X[p](k) = (\mathbb{Z}/p\mathbb{Z})^i$ because X[n] is divisible.

Reduce to: show $[p]^* : k(X) \to k(X)$ factors through $k(X)^p$. This implies that the inseparable degree is at least p^g .

The universal differential $d: k(X) \to \Omega^1_{k(X)/k}$ has kernel $k(X)^p$.

 $d([p]^*f) = [p]^*df = 0$ for all $f \in k(X)$. Thus it suffices to show that $[p]^*$ kills $\Omega^1_{k(X)/k}$.

From the discussion in Ch 4, d[p] maps $T_{X,0}$ to 0. Since [p] commutes with translation, $[p]^*$ is everywhere 0 on $\Omega^1_{X/k}$. Looking at the generic point $[p]^*$ kills $\Omega^1_{k(X)/k}$.

Remark. Indeed we classified all X[n] since by Chinese Remainder Thm we can split to the torsion subgroups for different p_i 's.